MATH 521A: Abstract Algebra

Preparation for Exam 1

1. Prove that $S=\mathbb{N} \cup\{\pi\}$ is well-ordered.
2. Let S be a set with a well-ordering $<$, and for each $x \in S$ the proposition $P(x)$ may be true or false. Suppose that $c \in S$ is the smallest counterexample, i.e. $P(c)$ is false, but for all $x \in S$ with $x<c, P(x)$ is true. Suppose that with these hypotheses we are able to derive a contradiction. Prove that $P(x)$ holds for all $x \in S$, using the well-ordering of S.
3. Let $m \in \mathbb{N}$. Use the division algorithm to prove that there is no integer n with $m<n<m+1$.
4. Let $p \in \mathbb{N}$ be irreducible, with $p>4$. Use the Division Algorithm to prove that p is of the form $6 k+1$ or $6 k+5$ for some integer k.
5. Prove the following variant of the division algorithm: Let a, b be integers with $b>0$. then there exist (not necessarily unique) integers q, r such that $a=b q+r$ and $-1 \leq$ $r \leq b-2$.
6. Let $a, b, c \in \mathbb{Z}$. Suppose that $a \mid b$ and $a \mid c$. Prove that $a \mid(b x+c y)$ for any $x, y \in \mathbb{Z}$.
7. Prove the Euclidean Algorithm: Let $a, b, q, r \in \mathbb{Z}$ with $b>0$ and $a=b q+r$. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
8. Use the extended Euclidean Algorithm to find $\operatorname{gcd}(119,189)$ and to find $x, y \in \mathbb{Z}$ with $119 x+189 y=\operatorname{gcd}(119,189)$.
9. Prove Theorem 1.4 in the text: Let $a, b, c \in \mathbb{Z}$, with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Prove that $a \mid c$.
10. Let $a, b \in \mathbb{N}$ with $\operatorname{gcd}(a, b)=1$. Without using the FTA, prove that $\operatorname{gcd}\left(a^{2}, b\right)=1$.
11. Let $a, b, c, d \in \mathbb{Z}$ with $a|c, b| c$, and $\operatorname{gcd}(a, b)=d$. Without using the FTA, prove that $a b \mid c d$.
12. Find all perfect squares dividing 144.
13. Let $a, b, c \in \mathbb{Z}$ with $a b=c^{2}$ and $\operatorname{gcd}(a, b)=1$. Prove that a, b are perfect squares.
14. Let $p \in \mathbb{N}$ be irreducible with $p \neq 3$. Prove that $p^{2}+2$ is reducible.
15. Apply the Miller-Rabin test to $n=63$ and $a=7$, and interpret the result.
